CURRICULUM AND SYLLABI FOR AUTONOMOUS STREAM

M.TECH. (WIRELESS COMMUNICATION) COURSES

(For students admitted from academic year 2015-16 onwards)

CURRICULUM

I SEMESTER

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subjects</th>
<th>Category</th>
<th>Periods</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA155</td>
<td>Probability and Stochastic Process</td>
<td>TY</td>
<td>3 1 0</td>
<td>40 60 100</td>
<td>4</td>
</tr>
<tr>
<td>EC151</td>
<td>Advanced Digital Communication</td>
<td>TY</td>
<td>3 1 0</td>
<td>40 60 100</td>
<td>4</td>
</tr>
<tr>
<td>EC152</td>
<td>Advanced Digital Signal Processing</td>
<td>TY</td>
<td>3 1 0</td>
<td>40 60 100</td>
<td>4</td>
</tr>
<tr>
<td>EC161</td>
<td>Emerging Wireless Technologies</td>
<td>TY</td>
<td>3 1 0</td>
<td>40 60 100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective I</td>
<td>TY</td>
<td>4 - 0</td>
<td>40 60 100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective II</td>
<td>TY</td>
<td>4 - 0</td>
<td>40 60 100</td>
<td>4</td>
</tr>
<tr>
<td>EC162</td>
<td>Wireless Communication and Networking Laboratory</td>
<td>LB</td>
<td>- - 3</td>
<td>60 40 100</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits 26

II SEMESTER

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subjects</th>
<th>Category</th>
<th>Periods</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC163</td>
<td>CDMA and OFDM for Wireless Communication</td>
<td>TY</td>
<td>3 1 0</td>
<td>40 60 100</td>
<td>4</td>
</tr>
<tr>
<td>EC164</td>
<td>Advanced Wireless Communication Systems</td>
<td>TCM</td>
<td>3 - 2</td>
<td>50 50 100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective III</td>
<td>TY</td>
<td>4 - 0</td>
<td>40 60 100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective IV</td>
<td>TY</td>
<td>4 - 0</td>
<td>40 60 100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective V</td>
<td>TY</td>
<td>4 - 0</td>
<td>40 60 100</td>
<td>4</td>
</tr>
<tr>
<td>EC165</td>
<td>Mini-project</td>
<td>PR</td>
<td>- - -</td>
<td>60 40 100</td>
<td>2</td>
</tr>
<tr>
<td>EC158</td>
<td>Research Methodology</td>
<td>PR</td>
<td>- - 3</td>
<td>100 - 100</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits 27

Approved in 3rd Academic Council Meeting
III SEMESTER

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subjects</th>
<th>Category</th>
<th>Periods</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC166</td>
<td>Project Phase I</td>
<td>PR</td>
<td>-</td>
<td>150</td>
<td>300</td>
</tr>
</tbody>
</table>

Total

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
</tbody>
</table>

Total Credits: 9

IV SEMESTER

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subjects</th>
<th>Category</th>
<th>Periods</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC167</td>
<td>Project Phase II</td>
<td>PR</td>
<td>-</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>PR</td>
<td>-</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Development Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credits: 14

A representative list of professional development courses is given below:

a) Industrial Training (Limited to one credit)
b) Specific Field Knowledge Training (Limited to a maximum of two credits)
c) Seminar related with directed study (Limited to a maximum of two credits)
d) Paper Publication in SCI Journals (Limited to one credit)

CA- Continuous Assessment, **SE**-Semester Examination, **TM**- Total Marks **TY**-Theory,
TCM-Theory with a Mini Project, **LB**-Laboratory, **PR**- Practice
<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ECE51</td>
<td>Cryptography and Wireless Security</td>
<td>TY</td>
</tr>
<tr>
<td>2.</td>
<td>ECE52</td>
<td>Wireless Sensor Networks</td>
<td>TY</td>
</tr>
<tr>
<td>3.</td>
<td>ECE53</td>
<td>Ubiquitous Computing</td>
<td>TY</td>
</tr>
<tr>
<td>4.</td>
<td>ECE71</td>
<td>Optical Networks</td>
<td>TY</td>
</tr>
<tr>
<td>5.</td>
<td>ECE72</td>
<td>VLSI for Wireless Communication</td>
<td>TY</td>
</tr>
<tr>
<td>6.</td>
<td>ECE73</td>
<td>Modelling and Simulation of Communication Networks</td>
<td>TY</td>
</tr>
<tr>
<td>7.</td>
<td>ECE74</td>
<td>Microwave Integrated Circuits</td>
<td>TY</td>
</tr>
<tr>
<td>8.</td>
<td>ECE75</td>
<td>Convergence Technologies</td>
<td>TY</td>
</tr>
<tr>
<td>9.</td>
<td>ECE76</td>
<td>Radio Over Fiber Systems</td>
<td>TY</td>
</tr>
<tr>
<td>10.</td>
<td>ECE77</td>
<td>Advanced Satellite Systems</td>
<td>TY</td>
</tr>
<tr>
<td>11.</td>
<td>ECE78</td>
<td>ASIC and FPGA Design</td>
<td>TY</td>
</tr>
<tr>
<td>12.</td>
<td>ECE79</td>
<td>UMTS</td>
<td>TY</td>
</tr>
<tr>
<td>13.</td>
<td>ECE80</td>
<td>Reconfigurable Computing</td>
<td>TY</td>
</tr>
<tr>
<td>14.</td>
<td>ECE81</td>
<td>Cognitive Radio</td>
<td>TY</td>
</tr>
<tr>
<td>15.</td>
<td>ECE82</td>
<td>Multimedia Communication Systems</td>
<td>TY</td>
</tr>
<tr>
<td>16.</td>
<td>ECE83</td>
<td>Network Management</td>
<td>TY</td>
</tr>
<tr>
<td>17.</td>
<td>ECE84</td>
<td>Ultra Wide Band Communication</td>
<td>TY</td>
</tr>
<tr>
<td>18.</td>
<td>ECE85</td>
<td>Digital Communication Receivers</td>
<td>TY</td>
</tr>
<tr>
<td>19.</td>
<td>ECE86</td>
<td>Space Time Wireless Communication</td>
<td>TY</td>
</tr>
<tr>
<td>20.</td>
<td>PHE51</td>
<td>Nanotechnology and its Applications</td>
<td>TY</td>
</tr>
<tr>
<td>Subject Code</td>
<td>Subject</td>
<td>Hours / Week</td>
<td>Credit</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>MA155</td>
<td>Probability and Stochastic Process</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisite

Basic Probability and Statistics.

Objectives

- To introduce Moment Generating function, Probability generating function, Characteristic function
- To familiarize students with Discrete and continuous distributions and stochastic Process
- To introduce Queuing Theory

Outcome

- Knowledgeable in Distributions and Stochastic processes
- Ability to demonstrate the application of stochastic processes and Queuing theory

UNIT – I

Random Variables-Discrete Random Variables

UNIT – II

Continuous Random Variables

Continuous Random Variables and their Distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions.

UNIT – III

Stochastic Processes

UNIT – IV

Queueing Models

UNIT – V

Continuous Parameter Markov Chain

Introduction, Little’s formula, M/G/1 queueing model, Continuous Parameter Markov Chain: The Birth and Death process: M/M/1, M/M/c, M/M/1/N, M/M/c/N (c<N), M/M/c/c, M/M/∞ models only - derivation of mean number of customer in the system, in the queue and waiting time - Simple applications, Special case of Birth and Death model (Pure Birth and Pure Death Processes).

Text Books:

Reference Books:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC151</td>
<td>Advanced Digital Communication</td>
<td>3 1 - 4</td>
<td>40 60</td>
<td>100</td>
</tr>
</tbody>
</table>

Prerequisite
- To understand the concept of different digital modulation schemes
- To study optimum receivers suitable for communication channels
- To understand the concepts of Pulse shaping and equalization
- To have an in depth knowledge on concepts and theoretical limits set by Information theory
- To learn the various coding schemes in detail

Objectives
- Ability to select an appropriate modulation scheme when the transmitted signal is corrupted by AWGN in the channel
- Knowledgeable in equalization techniques
- Ability to set the limit for compression and transmission of information
- Ability to use appropriate channel coding scheme to improve the performance of communication system over noisy channel

Outcome
- Ability to select an appropriate modulation scheme when the transmitted signal is corrupted by AWGN in the channel
- Knowledgeable in equalization techniques
- Ability to set the limit for compression and transmission of information
- Ability to use appropriate channel coding scheme to improve the performance of communication system over noisy channel

UNIT – I
Information Theory

Information Measure and Entropy, Source coding and Shannon’s Theorem, Source coding for Discrete Memoryless Sources, Discrete Memoryless Channels, Mutual Information and Channel capacity, Channel Coding Theorem, Continuous Sources and Differential Entropy.

UNIT – II
Channel Coding

Introduction to linear block codes, Convolution coding, Systematic, Non-recursive and recursive codes, Maximum likelihood decoding, Viterbi algorithm, Punctured convolutional codes, Dual-k codes, Concatenated codes. MAP and BCJR algorithms, Iterative decoding, Factor graphs, LDPC codes and Trellis coded modulation.

UNIT – III
Digital Modulation Schemes

Elements of digital communication system, Representation of Digitally Modulated Signals, Memory less modulation methods, Signaling Scheme with memory, Power spectrum of digitally modulated signals. Synchronization.

UNIT – IV
Receivers for AWGN Channel

Waveform and vector Channel models, Waveform and vector AWGN Channel, Optimum detection and error probability for band limited signaling and power limited signaling- Non Coherent detection, A comparison of digital signaling methods, Optimum receiver for CPM.

UNIT – V
Band Limited Channels

Characterization of Band Limited Channels, ISI, Nyquist Criterion, Controlled ISI channel with ISI and AWGN, Pulse Shaping for optimum transmission and reception, MLSE, Linear Equalization, Decision feedback equalization, ML detectors, Turbo and Blind Equalization methods.

Total contact Hours: 45
Total Tutorials: 15
Total Practical Classes: -
Total Hours: 60

Text Books:

Reference Books:

Website
1. www.nptel.ac.in
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>CA</th>
<th>SE</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC152</td>
<td>Advanced Digital Signal Processing</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
<td>40</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Prerequisite
- To learn about random signals and their processing techniques
- To study the parametric and non-parametric methods of spectrum estimation
- To understand the concepts of linear prediction and estimation
- To design adaptive filters for non-stationary processes
- To study and understand the multirate signal processing techniques

Objectives
- Knowledgeable in random signals, random processes and filtering techniques for random processes
- Knowledgeable in spectrum estimation methods
- Ability to design predictors and estimators
- Knowledgeable in adaptive filtering for non-stationary processes
- Knowledgeable in multirate signal processing techniques

Outcome
- Knowledgeable in random signals, random processes and filtering techniques for random processes
- Knowledgeable in spectrum estimation methods
- Ability to design predictors and estimators
- Knowledgeable in adaptive filtering for non-stationary processes
- Knowledgeable in multirate signal processing techniques

UNIT – I
Discrete Time Random Signal Processing

UNIT – II
Spectrum Estimation

UNIT – III
Linear Estimation and Prediction
- Linear prediction- Forward and backward predictions, Solutions of the Normal equations- Levinson-Durbin algorithms. Least mean square error criterion -Wiener filter for filtering and prediction, FIR Wiener filter and Wiener IIR filters, Discrete Kalman filter.

UNIT – IV
Adaptive Filters

UNIT – V
Multirate Digital Signal Processing
- Mathematical description of sampling rate conversion - Interpolation and Decimation, Decimation by an integer factor - Interpolation by an integer factor, Sampling rate conversion by a rational factor, Filter implementation for sampling rate conversion- direct form FIR structures, Polyphase filter structures. Multistage implementation of sampling rate conversion. Applications – Phase shifters – Interfacing of digital systems with different sampling rates - Sub band coding.

Total contact Hours: 45
Total Tutorials: 15
Total Practical Classes:
Total Hours: 60

Reference Books:

Website:
1. www.nptel.ac.in
Department: Electronics and Communication Engineering

Programme: M.Tech. (Wireless Communication)

<table>
<thead>
<tr>
<th>Semester : One</th>
<th>Category : TY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Code</td>
<td>Subject Code</td>
</tr>
<tr>
<td>EC16</td>
<td>Emerging Wireless Technologies</td>
</tr>
</tbody>
</table>

Prerequisite:
- To understand the basic concepts of emerging technologies
- To gain knowledge on LTE and Femtocell
- To study the performance of Intelligent Autonomous communication systems
- To acquire knowledge about Smart devices and content delivery networks

Objectives
- Knowledgeable in Emerging Wireless technologies
- Able to demonstrate the architecture and reference model of LTE
- Ability to examine the concepts of intelligent system
- Knowledgeable in future wireless technologies

Outcome
- To gain knowledge on LTE and Femtocell
- To study the performance of Intelligent Autonomous communication systems
- To acquire knowledge about Smart devices and content delivery networks

UNIT – I Emerging Technologies | Hours: 9

- Bluetooth – Radio frequency Identification
- Wireless Broadband (WiMax)
- IP and Mobile IP
- Packet delivery and Handover management
- Location management
- Registration
- Tunnelling and Encapsulation
- Cellular IP
- Internet Protocol Version_4
- Internet Protocol Version_6

UNIT – II Long Term Evolution | Hours: 9

UNIT – III Femtocell | Hours: 9

- Femtocell Technology
- Femtocell Benefits
- User Benefits
- Operator Benefits
- LTE Femtocell Design Issues
- Architecture – Deployment Scenarios
- Femtocell Access Control Strategy
- CSG Concept – Physical Cell Identity

LTE Femtocell Challenges and Technical Issues:
- Interference
- Spectrum Allocation
- Access Mode Impact
- Security and Privacy Challenges
- Synchronization
- Mobility

UNIT – IV Intelligent Autonomous Communications | Hours: 9

UNIT – V Future Technologies | Hours: 9

Total contact Hours: 45 | **Total Tutorials:** 15 | **Total Practical Classes:** - | **Total Hours:** 60

Text Books:

Websites:
3. http://www.saitechnology.com/index.php/saiproducts/sai-m2m/sai-4g-femto-pico-cell
Department: Electronics and Communication Engineering
Programme: M.Tech (Wireless Communication)

Semester: One
Category: LB

Subject Code: EC162
Subject: Wireless Communication and Networking Laboratory

<table>
<thead>
<tr>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite:

Objectives:
- To understand the working of communication system models
- To understand and implement application using embedded development board
- To simulate the different channel models for wireless networks

Outcome:
- Ability to demonstrate the design of modulator and antenna used for wireless communication
- Ability to implement the GSM and HTTP data transfer using Qualnet software and study the different parameters of the network
- Ability to design simple digital systems using Spartan6 FPGA board
- Ability to design filters suitable for wireless channel

LIST OF EXPERIMENTS

1. Design of GMSK modulator for GSM system.
2. Study of wireless sensor network using NI Labview
3. Study and comparison of various wireless channel models
4. Call establishment using different entities of GSM network using Qualnet.
5. Development of a network to run HTTP application using Qualnet.
6. Developing any one network topology, establishing a routing protocol and analysing using NS2.
7. Study of serial data transfer using HCS959 module.
8. Designing Yagi antenna and study the Return loss magnitude and phase characteristics
9. FFT of real time input signals using DSP trainer kits.
10. Simulation of OFDM transmitter and receiver in Matlab.
11. Study of Spartan6 FPGA and perform the following operations
 i. Activating the traffic light controller interface
 ii. Enabling the Keypad Matrix interface with LEDs.
 iii. Enabling the graphic LCD interface in Spartan6 FPGA.
 iv. Design and implementation of Manchester encoder.

Total contact Hours: 45
Total Tutorials: 45
Total Practical Classes: 45
Total Hours: 45
Department: Electronics and Communication Engineering
Programme: M.Tech. (Wireless Communication)

Semester: Two
Category: TY

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC163</td>
<td>CDMA and OFDM for Wireless Communication</td>
<td>L T P</td>
<td>C</td>
<td>CA SE TM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 -</td>
<td>4</td>
<td>40 60 100</td>
</tr>
</tbody>
</table>

Prerequisite

- To addresses radio resource allocation, sharing, control and management for CDMA and OFDM based systems
- To understand call establishment, call processing, traffic management
- To address Uplink and downlink interference management, scheduling issues and capacity evaluation
- To analyze the system and channel requirements for OFDM system
- To study system description of OFDM based resource allocation schemes

Objectives

- Ability to demonstrate the impact of spread spectrum techniques on forward link and reverse link
- Ability to characterize resource handling in terms of capacity in real time scenario
- Ability to demonstrate call processing and traffic states by link budget and traffic analysis
- Ability to illustrate the choice of modulation, channel estimation in time and frequency domain, and synchronization in OFDM/OFDMA systems

Outcome

UNIT – I
Principles of Code Division Multiple Access
- Spread spectrum technique – Direct sequence and frequency hopping spread spectrum communication system – PN codes and Walsh codes – Rake receiver – Capacity – Effects of loading, sectorization and voice activity – Power control – Hand off – Link structure – Forward link – Pilot, synchronization, paging and traffic channels – Reverse Link – access and traffic channel.

UNIT – II
Call Processing and Traffic
- Call processing states – Initialization, idle, access and traffic states – Forward link and Reverse link analysis - Calculation of Ec/I0 and Eb/N0 – Traffic intensity – Grade of Service – Erlang-B and C models.

UNIT – III
OFDM Basics

UNIT – IV
Coding, Modulation and Channel Estimation
- Timing and Frequency offset in OFDM –Synchronization – Synchronization using cyclic extension and special training symbols – Coherent detection – One and two dimensional channel estimation – Special training symbols – Decision directed channel estimation – Differential detection in the time and frequency domain.

UNIT – V
OFDMA and MC-CDMA
- Frequency hopping in OFDMA - OFDMA system description – Channel coding, modulation, time and frequency synchronization, Combination of OFDM and CDMA - MC-CDMA, MT-CDMA and MC-DSCDMA systems - Difference between OFDMA and MC-CDMA

Total contact Hours: 45
Total Tutorials: 15
Total Practical Classes: -
Total Hours: 60

Text Books:

Reference Books:
Department: Electronics and Communication Engineering
Programme: M.Tech. (Wireless Communication)
Semester: Two
Category: TCM

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC164</td>
<td>Advanced Wireless Communication Systems</td>
<td>3 - 2 - 4</td>
<td>50 - 50 - 100</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisite
- To understand the evolution trends involved in mobile wireless systems.
- To enable the postgraduates to distinguish and quantify the various fading effects and propagation models along with Channel measurements.
- To know and compare the various antennas and diversity reception techniques adopted in wireless communication systems.
- To analyze the overall system performance of wireless communication system and to introduce the emerging advanced wireless standards.

Objectives
- Ability to track the growth trend of the Wireless Communication Systems
- Ability to Characterize and measure the mobile channel quantitatively
- Design and demonstrate mobile antennas and reception techniques for any specific application
- Ability to carry out the system performance for both in-door and out-door wireless communications
- Ability to demonstrate the knowledge of present day and advanced wireless communication technologies befitting for a potential researcher

Outcome
- Ability to track the growth trend of the Wireless Communication Systems
- Ability to Characterize and measure the mobile channel quantitatively
- Design and demonstrate mobile antennas and reception techniques for any specific application
- Ability to carry out the system performance for both in-door and out-door wireless communications
- Ability to demonstrate the knowledge of present day and advanced wireless communication technologies befitting for a potential researcher

UNIT – I
Trends In Mobile Wireless
- Hours: 9

UNIT – II
Propogation and Shadowing
- Hours: 9

UNIT – III
Fading Channel Characterisation
- Hours: 9

UNIT – IV
Performance Evaluation
- Hours: 9
- Performance evaluation, signalling evaluation, measurement of average received level and level crossings, spectral efficiency, OFDMA Vs CDMA Evaluation, Evaluation of data services, WiMAX Vs 3G for mobile broadband wireless.

UNIT – V
Quality Improvement
- Hours: 9

Mini Project
- Hours: 30
- PG students will be motivated to carry out the Mini Project in
 - Design, fabrication/analytical modeling/simulation of OFDM, CDMA 2000, WCDMA networks,
- Design and simulation of AIN and IP networks, Modeling/Simulation of propagation models,
- Performance evaluation of different traffic for various propagation models.
- Performance evaluation of OFDMA/CDMA/3G/Mobile WiMAX service, Design, fabrication and testing of antennas for different applications.
- Performance improvement through MIMO/Receive diversity/Transmit diversity and coding.

<table>
<thead>
<tr>
<th>Total contact Hours: 45</th>
<th>Total Tutorials:</th>
<th>Total Practical Classes: 30</th>
<th>Total Hours: 75</th>
</tr>
</thead>
</table>

Text Books:

Reference Books:

Website:
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC165</td>
<td>Mini project</td>
<td>2</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

Prerequisite

- To apply engineering concepts in order to come out with a technical solution
- To analyze the outcomes and present the results in an appropriate way
- To prepare a technical report of the project
- To move from competitive learning to collaborative learning

Outcome

- Ability to undertake a piece of research work
- Ability to extend the project to find an application for society

MINI PROJECT

In the course of the degree Programme each group of not more than three students has to identify a mini project work in the area of their specialization and the mini project will be implemented under the supervision of a faculty. The progress of the work will be monitored and assessed internally. A project report has to be submitted at the end of the semester after completion of the project work. The semester examination will be evaluated by a panel of examiners.
Department: Electronics and Communication Engineering
Programme: M.Tech. (Wireless Communication)

Semester: Two
Category: PR

<table>
<thead>
<tr>
<th>Subject code</th>
<th>Subject</th>
<th>Hours/week</th>
<th>Credit</th>
<th>Maximum marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC158</td>
<td>Research Methodology</td>
<td>L T P</td>
<td>3 C</td>
<td>100 CA SE TM</td>
</tr>
</tbody>
</table>

Prerequisite: -

Objectives
- To educate students to methods of selection of research problems
- To expose students to different research methods

Outcomes
- Students will be capable to identify and narrow down to the area of research on the basis the requirements of industrial and global requirements
- Students will exhibit the domain skill to choose suitable research methods to execute research effectively
- Students will possess knowledge to further their academic program, namely, Ph.D program.

- **Characteristics of research:** Various functions that describe characteristics of research such as systematic, valid, verifiable, empirical and critical approach.
- **Types of research:** Pure and applied research. Descriptive and explanatory research. Qualitative and quantitative approaches.
- **Research procedure:** Formulating the Research Problem, Literature Review, Developing the objectives, Preparing the research design including sample. Design, Sample size.
- **Considerations in selecting research problem:** Relevance, interest, available data, choice of data, Analysis of data, Generalization and interpretation of analysis.
- **Outcome of research:** Significance of report writing – Layouts of the research report – Types of reports – Oral presentation – Mechanics of writing research report – Precautions for writing research reports – Plagiarism and copy right violation – Patent writing and filing.

Total contact hours: -
Total tutorials: -
Total practical classes: 15
Total hours: 15

Reference books:
1. Dawson, Catherine, Practical Research Methods, UBS Publishers and Distributors, New Delhi, 2002
Department: Electronics and Communication Engineering
Programme: M.Tech. (Wireless Communication)

Semester: Three
Category: PR

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC166</td>
<td>Project Phase I</td>
<td>L T P</td>
<td>C</td>
<td>CA SE TM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- - -</td>
<td>9</td>
<td>150 150 300</td>
</tr>
</tbody>
</table>

Prerequisite: -

Objectives:
- To identify a research problem
- To develop an abstract model that addresses the research problem
- Build a prototype system or constrained implementation of the system that acts as a proof
- Understanding the evaluation of the system
- To present a critical analysis and present it as a report

Outcome:
- Ability to transform knowledge into an experimental process
- Ability to demonstrate the motivation to extend the work to a research
- Ability to identify and apply appropriate tools to solve a problem
- Ability to examine hypotheses

Each student will do an exhaustive literature survey and identify an experimental and / or a theoretical project to be carried out under a supervision of a guide. The phase I of the project work has to be completed by the end of third semester. The progress of the work will be monitored and assessed internally for 150 marks by a committee comprising departmental faculty members and project guide. A project report has to be submitted at the end of the semester after completion of the phase I of the project work. The external assessment will be carried out for 150 marks as per regulations.
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC167</td>
<td>Project Phase II</td>
<td>-</td>
<td>14</td>
<td>200 200 400</td>
</tr>
</tbody>
</table>

Prerequisite

- To identify a research problem
- To develop an abstract model that addresses the research problem
- Build a prototype system or constrained implementation of the system that acts as a proof
- Understanding the evaluation of the system
- To present a critical analysis and present it as a report

Objectives

- Ability to transform knowledge into an experimental process
- Ability to demonstrate the motivation to extend the work to a research
- Ability to identify and apply appropriate tools to solve a problem

The phase II of the project work has to be completed by the end of the fourth semester. The progress of the work will be monitored and assessed internally for 200 marks by a committee comprising departmental faculty members and project guide. A project report summarizing the entire project work has to be submitted at the end of the semester after completion of the phase II of the project work. The external evaluation will be carried out as per regulations for 200 marks.
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE51</td>
<td>Cryptography and Wireless</td>
<td>3 1 -</td>
<td>4 40</td>
<td>60 100</td>
</tr>
</tbody>
</table>

Prerequisite: -

Objectives:
- To understand Security Services, Attacks and Mechanisms as well as Symmetric Key Cryptographic techniques
- To gain knowledge on number theory and public key management schemes
- To understand the various Authentication Techniques
- To study about system security and security blueprint
- To analyze the basic concepts on wireless security and threats

Outcome:
- Ability to develop different symmetric key algorithms
- Ability to develop application oriented PKC protocols
- Ability to develop authentication schemes pertaining to system requirements
- Ability to demonstrate the evaluation of security among different network configurations by implementing security mechanisms and meeting out efficient security standards
- Ability to implement efficient cryptosystems for Wireless systems

UNIT – I
Introduction and Symmetric Key Encryption
Hours: 9
Attacks-Services-Mechanisms-OSI Security architecture-Model for Network Security- Symmetric Cipher Model-Substitution and Transposition Techniques- Simplified DES-DES Block Cipher Principles-The Strength of DES-Differential and Linear Cryptanalysis-Block Cipher Design Principles- Block Cipher Modes of Operation- Groups, Rings and Fields-Modular Arithmetic- Euclid’s Algorithm- Finite Fields of the Form GF(p)- Polynomial Arithmetic-Finite Fields of the Form GF(2^n)-AES cipher- Triple DES

UNIT – II
Number Theory and Public Key Encryption and Authentication Schemes
Hours: 9

UNIT – III
Network Security
Hours: 9

UNIT – IV
System Security and its Blueprint
Hours: 9

UNIT – V
Wireless Threats and Security
Hours: 9

<table>
<thead>
<tr>
<th>Total contact Hours: 45</th>
<th>Total Tutorials: 15</th>
<th>Total Practical Classes: -</th>
<th>Total Hours: 60</th>
</tr>
</thead>
</table>

Text Books:

Reference Books:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECES2</td>
<td>Wireless Sensor Networks</td>
<td>4</td>
<td>-</td>
<td>40</td>
</tr>
</tbody>
</table>

Prerequisite

- To expose the students to the fundamentals of wireless communication technologies
- To introduce the ideas and need for Sensor networks
- To study the Architecture and Middleware of WSN
- To teach the role of MAC and Routing protocols
- To introduce energy management in network protocols
- To expose the students to the Applications of WSN
- Enable the students to know techniques involved in network management

Objectives

- Knowledgeable in the concept of Sensor network and its Protocols
- Ability to implement Wireless Sensor Network for various applications
- Ability to understand the challenges in coverage and routing for energy efficiency
- Ability to examine the possible node architectures for specific applications
- Ability to sense Global Phenomena

Outcome

UNIT – I

Introduction

UNIT – IV

Routing Protocols FOR WSN

Case Study: Sensing Global Phenomena

Total contact Hours: 60 **Total Tutorials:** - **Total Practical Classes:** - **Total Hours:** 60
Text Books:

Reference Books:

Websites:

Department: Electronics and Communication Engineering

Programme: M.Tech. (Wireless Communication)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Category</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE53</td>
<td>Ubiquitous Computing</td>
<td>4</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

Prerequisite:

- To understand the basics and vision of Ubiquitous computing
- To study the emerging technologies
- To study wireless LAN and security methods
- To analyze the performance of Intelligent systems and interworking
- To study different Ubiquitous communication networks

Objectives

- Ability to characterize the wireless LAN in terms of mobility and deployment
- Ability to demonstrate the performance of Ad hoc networks in terms of security issues
- Ability to examine the performance of IS systems and IN
- Knowledgeable in the types of Pervasive communication networks

Outcome

- To understand the basics and vision of Ubiquitous computing
- To study the emerging technologies
- To study wireless LAN and security methods
- To analyze the performance of Intelligent systems and interworking
- To study different Ubiquitous communication networks

UNIT – I

Ubiquitous Computing Basics and Vision

Ubiquitous or Pervasive computing-Types of contexts-Enumeration based Role based Middleware and gateways-Core properties of UbiCom systems-Distributed ICT systems-Implicit Human-Computer Interaction-Autonomy-Architectural design for UbiCom systems-Ambient Computing-Elements of Pervasive Architecture-Requirements of Computational infrastructure-Ubiquitous computing applications-Standards

UNIT – II

Human-Computer Interaction

Introduction- User interfaces and interaction for four widely used devices – Hidden UI via basic smart devices – Hidden UI via wearable and implanted devices – Human-centred design – User models

UNIT – III

Context Aware Systems

UNIT – IV

Intelligent Systems, Networks and Interworking

Introduction-Basic concepts-Types of IS-Use of intelligence in Ubiquitous Computing-IS Architectures-Types of IS models -IS Systems operation- Intelligence in Networks-IN Conceptual Model-Soft switch-Programmable Networks-Technologies and interfaces for IN.

UNIT – V

Ubiquitous Communications

Audio Networks – Data Networks - Wireless data networks - Universal and Transparent Audio, Video and Alphanumeric Data Network Access-Ubiquitous Networks-Further Network Design Issues-Service Oriented Networks

Total contact Hours: 60 | **Total Tutorials:** - | **Total Practical Classes:** - | **Total Hours:** 60

Text Books:

2. Frank Adelstein, Sandeep K.S. Gupta, Golden G. Richard III, Loren Schweibert,

Reference Books:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE71</td>
<td>Optical Networks</td>
<td>3</td>
<td>1</td>
<td>40</td>
</tr>
</tbody>
</table>

| Total contact Hours: 45 | Total Tutorials: 15 | Total Practical Classes: 6 | Total Hours: 60 |

Objectives:
- To learn the various architectures of optical networks and to introduce the issues and challenges related to optical networks
- To study about the factors enabling next generation optical networks
- To learn the applications of wavelength routing, wavelength conversion and re-routing
- To understand the design of virtual topology and construction of multicast trees
- To expose the students to the concepts of network control and management

Outcome:
- Knowledgeable in different WDM architectures and their applications and limitations
- Ability to examine the performance of various RWA algorithms and virtual topology design algorithms
- Ability to examine the tradeoff involved in choice of various switching techniques
- Ability to apply the knowledge to identify a suitable architecture and algorithms to design an Optical network for satisfying the ever-increasing bandwidth intensive applications of the future
- Knowledgeable in protection and survivability approaches suitable for WDM optical networks

UNIT – I Optical Network Architectures

UNIT – II Routing and Wavelength Assignment
Introduction- Classification of RWA algorithms-RWA algorithms-fairness and admission control- distributed control protocols. Need for wavelength conversion-wavelength convertible node architectures-converter placement and allocation problems. Benefits of wavelength rerouting-issues in wavelength rerouting -rerouting schemes-rerouting in networks with sparse wavelength conversion

UNIT – III Virtual Topology Design and Optical Multicasting
Introduction- virtual topology design problems- virtual topology design subproblems-virtual topology design heuristics-need for virtual topology design reconfiguration. Introduction to multicast routing-multicasting node architectures-multicast tree generation-source based tree generation-Steiner tree based generation.

UNIT – IV Control and Management
Network management functions- management frame work and protocols- performance management-configuration management. Fault management -failures and recovery- single and dual link failures- channel failures and node failures- protection in SONET- benefits of optical layer protection-restoration schemes in WDM networks-multiplexing schemes-metrics of evaluation-quality of protection

UNIT – V Optical Packet and Burst Switching
OBS node architecture- burst assembly approaches - burst switching protocols-wavelength channel scheduling, Introduction to optical packet switching- node architecture- contention resolution protocols-test beds. PON architectures- hybrid optical- wireless access network architectures
<table>
<thead>
<tr>
<th>Text Books:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. C. Siva Ram Murthy and Mohan Gurusamy, WDM Optical Networks: Concepts, Design and Algorithms,</td>
</tr>
<tr>
<td>Reference Books:</td>
</tr>
<tr>
<td>3. L.G.Kazovsky, Ning Cheng, W.T. Shaw, David Gutierrez and S.Wong, Broadband Optical access networks,</td>
</tr>
<tr>
<td>Wiley, 2011</td>
</tr>
<tr>
<td>Websites:</td>
</tr>
<tr>
<td>1. www.advaoptical.com</td>
</tr>
<tr>
<td>2. www.opticsexpress.org</td>
</tr>
<tr>
<td>3. www.ciena.com</td>
</tr>
<tr>
<td>4. www.lightreading.com</td>
</tr>
<tr>
<td>5. www.photonicsonline.com</td>
</tr>
<tr>
<td>6. www.tellabs.com</td>
</tr>
<tr>
<td>Subject Code</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>ECE72</td>
</tr>
</tbody>
</table>

Prerequisite
- To introduce different receiver architectures used in wireless communication
- To introduce the design process involved in the receiver front-end
- To provide an overview of different types of mixer circuits suitable for VLSI implementation
- To introduce the different types of ADCs with reference to wireless communication
- To introduce the design process of frequency synthesizer and its blocks
- To provide an overview about the transmitter design process and architectures

Objectives
- Ability to design the transmitter and receiver front-end
- Ability to design ADCs for wireless communication
- Ability to demonstrate the building blocks of frequency synthesizer

Outcome
- To introduce different receiver architectures used in wireless communication
- To introduce the design process involved in the receiver front-end
- To provide an overview of different types of mixer circuits suitable for VLSI implementation
- To introduce the different types of ADCs with reference to wireless communication
- To introduce the design process of frequency synthesizer and its blocks
- To provide an overview about the transmitter design process and architectures

UNIT – I
Receiver Architectures and Low Noise Amplifier

Receiver Architectures:
- Heterodyne and Other Architectures
- Filter Design
- Band Selection Filter (BPF1)
- Image Rejection Filter (BPF2)
- Channel Filter (BPF3)
- Nonlinearity and Noise

Low Noise Amplifier:
- Design: DC Bias, Gain and Frequency Response, Noise Figure, NarrowBand LNA: Impedance Matching, Interpretation of Power Matching, Core Amplifier, Noise Figure, Power Dissipation, Trade-Off Between Noise Figure and Power, Noise Contribution from other Sources, Gain, Other Real-Life Design Considerations

UNIT – II
Active Mixer and Passive Mixer

Active Mixer:
- Unbalanced Mixer
- Single Balanced Mixer
- Double Balanced Mixer: Gilbert Mixer
- Qualitative Description of the Gilbert Mixer, Conversion Gain, Distortion, Low Frequency and High Frequency Analysis of Gilbert Mixer, Distortion, Analysis of Noise in Unbalanced Mixer, A complete Active Mixer

Passive Mixer:
- Switching Mixer

UNIT – III
Analog-To-Digital Converters

A/D converters Used in a Receiver:
- Wideband Versus Narrowband A/D Converters

UNIT – IV
Phase/Frequency Processing Components, Loop Filter and System Design

Phase/Frequency Processing Components:
- PLL-Based Frequency Synthesizer, Phase Detector/Charge Pump, Phase Frequency Detector, EXOR Phase Detector, Charge Pump, Spurs, Kpd, Dividers, Survey of Different Types of Divider, A Complete Divider for DECT Application, VCO, LC Oscillators, Ring Oscillators, Phase Noise, Basic Phase Noise Models

Loop Filter and System Design:
- Loop Filter: General Description, Basic Equations and Definitions First-Order Filter, Second-Order Filter, High-Order Filters, Loop Filter: Design Approaches
<table>
<thead>
<tr>
<th>UNIT – V</th>
<th>TRANSMITTER ARCHITECTURES AND POWER AMPLIFIER</th>
<th>Hours: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter Back End: General Discussion, Motivations and General Design Philosophy, Direct Conversion and Other Architectures, Quadrature LO Generator, Single Ended RC, Single Ended LC, R-C with Differential Stages, Polyphase I/Q Generator, Divider Based Generator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Amplifier Design: Power Output Control, PA Design Issues, Class A Amplifiers, Class AB/B/C Amplifiers, Choice of Class A vs AB/C Amplifiers, Class E Amplifiers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total contact Hours: 45</td>
<td>Total Tutorials: 15</td>
<td>Total Practical Classes: -</td>
</tr>
</tbody>
</table>

Text Books:

Reference Books:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE73</td>
<td>Modeling and Simulation of Communication Networks</td>
<td>3 1 -</td>
<td>4 40 60 100</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisite
- To understand the concept of modeling
- To generate and perform the parameter estimation
- To analyze the source coding theorem
- To analyze the performance of wireless communication system
- To analyze the performance of CDMA cellular radio system

Objectives
- Knowledgeable in steps involved in simulation study
- Ability to demonstrate the methodology for simulating communication system operating over fading channels
- Ability to demonstrate the cellular concept of Wireless Communication Systems

Reference Books:
4. M.C. Jeruchim, P. Balaban and K. Sam Shanmugam, Simulation of Communication Systems:
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE74</td>
<td>Microwave Integrated Circuits</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite
- To understand different technologies in MICs
- To analyze the performance of planar transmission lines
- To design different types of lumped elements
- To study several non-reciprocal components
- To study various amplifier and oscillator designs

Objectives
- Knowledgeable in design and fabrication of microwave devices
- Ability to analyze and design various planar micro strip lines
- Ability to examine different types of Microwave Integrated Circuits
- Ability to characterize various non reciprocal components and active devices

Outcome
- Knowledgeable in design and fabrication of microwave devices
- Ability to analyze and design various planar micro strip lines
- Ability to examine different types of Microwave Integrated Circuits
- Ability to characterize various non reciprocal components and active devices

UNIT – I

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Microwave Integrated Circuits</td>
<td></td>
</tr>
</tbody>
</table>

MMIC technology- advantages and applications-Active device technologies-designapproaches-multichip module technology-Dielectric substrates.

UNIT – II

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumped Elements and Non Reciprocal Components</td>
<td></td>
</tr>
</tbody>
</table>

UNIT – III

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Microstrip Line, Slot Line and Coplanar Waveguides</td>
<td></td>
</tr>
</tbody>
</table>

Transmission lines-Characteristics of conventional transmission structures-Characteristics of planar transmission lines-strip line-microstrip line-suspended and inverted microstrip lines-slot lines-coplanar lines-Comparison of various MIC transmission media-coupled line-discontinuities.

UNIT – IV

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td></td>
</tr>
</tbody>
</table>

Monolithic low distortion variable gain amplifier-Stability & Gain analysis-matching techniques-reactively matched amplifier design-Low Noise Amplifiers-Power amplifiers-Driver.

UNIT – V

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillators</td>
<td></td>
</tr>
</tbody>
</table>

Design principles, active device CAD techniques for large signal oscillators design- phase noise-VCO-mixers-Phase detectors

Text Books:

Reference Books:
Department: Electronics and Communication Engineering
Programme: M.Tech. (Wireless Communication)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE75</td>
<td>Convergence Technologies</td>
<td>4</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

Prerequisite
- To understand the integration of different traffic in one flexible network
- To distinguish the services, protocols and access schemes between different networks
- To analyze traffic management in convergent networks
- To explore the network and security management in convergent networks

Objectives
- Ability to examine the need for convergence
- Knowledgeable in the compatibility issues among different networks
- Ability to manage the traffic in convergent networks
- Ability to implement security in convergent networks

Outcome
- Ability to examine the need for convergence
- Knowledgeable in the compatibility issues among different networks
- Ability to manage the traffic in convergent networks
- Ability to implement security in convergent networks

UNIT – I
Introduction
Hours: 12

UNIT – II
Network Services and Protocol Layering
Hours: 12

UNIT – III
Communication Network Functions
Hours: 12
Addressing techniques- classification of addressing techniques- addressing structure in Internet- addressing structure in Telecom Networks. Signaling complexity in Different Networks, Classification of signaling techniques- signaling issues- Signaling models- point to multipoint signaling- ISDN signaling, Routing protocols/techniques- core routing concepts. Traffic Management: Concept of traffic, concept of service, Network capabilities, Types of traffic, Traffic Management, Traffic contract management, traffic policing, priority control, Flow control versus congestion control, Traffic Management in ATM.

UNIT – IV
Network Management
Hours: 12

UNIT – V
Convergence Technologies for 3G and 4G networks
Hours: 12

Total contact Hours: 60
Total Tutorials: -
Total Practical Classes: -
Total Hours: 60

Text Books:
2. Jeffrey Bannister, Paul Mather, Sebastian Cooperative Convergence Technologies for 3G Networks: IP,
UMTS, EGPRS and ATM, Wily india

Reference Books:

2. Raj Pandya, Mobile & Personal Communication system & services, Prentice Hall of India.

Websites:

1. www.informit.com
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE76</td>
<td>Radio Over Fiber Systems</td>
<td>L 4 T - P -</td>
<td>4 CA 40 SE 60 TM 100</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisite:
- To understand the microwave properties of optic link
- To learn about LASER diode
- To study the role of ROF in cellular communication

Objectives:
- Knowledgeable in fiber optic links
- Ability to apply ROF in cellular communication
- Ability to examine the fiber optic networks

Outcome:
- Knowledgeable in fiber optic links
- Ability to apply ROF in cellular communication
- Ability to examine the fiber optic networks

UNIT – I
Introduction to Radio Over Fiber
Hours: 12
Radio Over Fiber – applications, advantages, limitations, Microwave properties of optical links, Direct modulated optical links, external modulators, types, modulation transfer in microwave fiber optic links nonlinearities.

UNIT – II
Analog Fiber Optic Links
Hours: 12
Sub carrier Optical fiber transmission systems, Fiber optic transmission of 64-QAM, 256-QAM signals, Capacity of coaxial and fiber optic links, LASER diode and Photodiode

UNIT – III
Components for ROF Systems
Hours: 12
Analog modulation of LASER diode, LASER diode fundamentals, Rate equation analysis, Intensity modulation, Frequency modulation, Low cost LASER diode driver, LASER diode noise and their influence on link performance.

UNIT – IV
ROF Technology for the Cellular Applications
Hours: 12
3G cellular systems, cellular architecture, UMTS architecture, WCDMA ROF systems, Microdiversity, Macro diversity, Traffic estimation, Spectral efficiency, power level, multiple user interference, ROF for Hiper LAN2, Micro cellular communication networks

UNIT – V
Fiber Optic Radio Networks
Hours: 12

Total contact Hours: 60
Total Tutorials: -
Total Practical Classes: -
Total Hours: 60

Reference Books:
Department: Electronics and Communication Engineering
Programme: M.Tech. (Wireless Communication)
Semester:
Category: TY

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE77</td>
<td>Advanced Satellite Systems</td>
<td>4 - - 4</td>
<td>40 60</td>
<td>100</td>
</tr>
</tbody>
</table>

Prerequisite
- To gain deep knowledge about satellite networks
- To understand the working of navigation, tracking and safety in satellite systems
- To comprehend the knowledge about sensors in remote sensing
- To study about the different broadcast satellite services
- To understand the IPv4 and IPv6 satellite networking systems

Objectives
- Knowledgeable in differentiating satellites based on their coverage and services.
- Ability to examine the necessary parameters for design of Navigation and tracking satellite systems
- Ability to develop image processing tools to process the signals from different sensors
- Knowledgeable in establishing a broadcast satellite networks for different services
- Knowledgeable in on-board processing on satellite for different data oriented networks

Outcome
- Knowledgeable in differentiating satellites based on their coverage and services.
- Ability to examine the necessary parameters for design of Navigation and tracking satellite systems
- Ability to develop image processing tools to process the signals from different sensors
- Knowledgeable in establishing a broadcast satellite networks for different services
- Knowledgeable in on-board processing on satellite for different data oriented networks

UNIT – I
Introduction

UNIT – II
Navigation, Tracking and Safety Systems

UNIT – III
Remote Sensing Systems and Techniques

UNIT – IV
Broadcast Systems

UNIT – V
Satellite Networking System
Architecture and characteristics of satellite networks – IPv6 Infrastructure - Routing and Route Management- IP networking with satellite links –On board processing - VSAT systems – TCP state machine for three way handshake connection - Use of IPv6 for satellite based access to remote WSN.

Total contact Hours: 60
Total Tutorials: -
Total Practical Classes: -
Total Hours: 60

Text Books:
5. VASAT Networks G. Maral, John Wiley and sons.

<table>
<thead>
<tr>
<th>Reference Books</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Websites</th>
</tr>
</thead>
</table>
Subject Details

Subject Code: ECE78
Subject: ASIC and FPGA Design
Hours / Week: 3
Credit: 1
Maximum Marks: 40

Prerequisite
- To study the design flow of different types of ASIC
- To familiarize with different types of programming technologies and logic devices
- To learn the architecture of different types of FPGA
- To gain knowledge about partitioning, floor planning, placement and routing including circuit extraction of ASIC
- To synthesis, simulate and test systems
- To understand the design issues of SoC
- To know about different high performance algorithms and their applications in ASICs

Objectives
- Ability to programme the various PLDs based on the required digital system
- Knowledgeable in the nuances of ASIC design
- Ability to design, analyse and test a digital system
- Ability to design filters and equalizers
- Knowledgeable in SoC design

Outcome
- To know about different high performance algorithms and their applications in ASICs

Unit Details

UNIT – I
Overview of Asic and Pld
Hours: 9
Topics:
- Types of ASICS - Design flow – CAD tools used in ASIC Design – Programming Technologies - Antifuse – static RAM – EPROM and EEPROM technology, Programmable Logic Devices: ROMs and EPROMs – PLA – PAL. Gate Arrays – CPLDs and FPGAs

UNIT – II
ASIC Physical Design
Hours: 9
Topics:

UNIT – III
Logic Synthesis, Simulation and Testing
Hours: 9
Topics:

UNIT – IV
FPGA
Hours: 9
Topics:
- Logic blocks, routing architecture, Design flow technology - mapping for FPGAs, Xilinx XC4000 - ALTERA’s FLEX 8000/10000, ACTEL’s ACT 1,2,3 and their speed performance Case studies: Altera MAX 5000 and 7000 - Altera MAX 9000 – Spartan II and Virtex II FPGAs - Apex and Cyclone FPGAs

UNIT – V
SOC Design
Hours: 9
Topics:

Total Contact Hours
- 45

Total Tutorials
- 15

Total Practical Classes
- 25

Total Hours
- 60

Reference Books:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Websites:

1. http://nptel.ac.in/courses/117106092/
2. http://staff.fit.ac.cy/com.tk/MSc-Digital/
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE79</td>
<td>UMTS</td>
<td>4</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>

Prerequisite

- To understand the trend involved in UMTS networks
- To learn about the radio network architecture and terminal features used in UMTS environment
- To comprehend the protocol aspects at different layers, services and security associated with it
- To learn and compare the various operating techniques and technology adopted in UMTS
- To gain knowledge on perspective 4G systems and its features with case studies

Objectives

- Ability to appreciate the features of physical layer issues pertaining to UMTS systems
- Ability to identify the technological advances in the layered architecture of the network and end user UMTS terminals
- Ability to examine the performance of protocols at different layers and security features in-built in UMTS
- Knowledgeable in operational techniques for enhancing capacity and flexibility
- Knowledgeable in forthcoming advanced technologies so as to contribute towards research

Outcome

UNIT – I

Basics of UMTS

UNIT – II

UMTS Network and User Terminal

| UTRAN - UTRAN Architecture, UMTS Base Station, Radio network Controller. UMTS Core Network – Core network architecture in 3GPP, Mobility management, Communication management, Architecture aspects in 3GPP R4 and R5. UMTS Terminal – terminal architecture, Terminal capabilities, subscription and user interface. | Hours: 12 |

UNIT – III

UMTS Protocols, services and Security Issues

UNIT – IV

Additional Techniques for Capacity and Flexibility Enhancement

UNIT – V

Perspective Systems of 4G and Related Topics

<table>
<thead>
<tr>
<th>Text Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Code</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>ECE80</td>
</tr>
</tbody>
</table>

Prerequisite
- To understand the need for reconfigurable computing
- To learn about various device architectures
- To examine the various reconfigurable computing systems.
- To understand the different types of computing models for programming reconfigurable architectures
- To expose the students to HDL programming and familiarize with the development environment
- To understand to the various placement and routing protocols
- To develop applications with FPGAs

Objectives
- Knowledge in device architectures used for reconfigurable computing
- Knowledgeable in HDL Programming for the Programming Reconfigurable systems
- Ability to map designs to reconfigurable platforms
- Ability to do application development with FPGAs

Outcome
- Case Studies of FPGA Applications – System on a Programmable Chip (SoPC) Designs.

Reference Books:

Websites:
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE81</td>
<td>Cognitive Radio</td>
<td>4 L</td>
<td>4 C</td>
<td>40 CA 60 SE 100 TM</td>
</tr>
</tbody>
</table>

Prerequisite
- To understand essential background of SDR and CR technologies
- To discuss the relevant radio propagation channel models
- To focus on the fundamentals of spectrum management
- To study about radio spectrum regulatory policies and fundamentals of digital Communication
- To know about networking aspects of CRs and security issues

Objectives
- Ability to demonstrate the fundamental capacity limits and associated transmission techniques for different cognitive radio network paradigms
- Ability to examine the fundamental tradeoffs in spectrum sensing
- Ability to demonstrate the fundamental constraints and properties of a digital communication system of a cognitive radio
- Ability to implement cognitive radio network (CRN) architectures
- Ability to demonstrate security threats to CR networks

Outcome
- Ability to demonstrate the fundamental capacity limits and associated transmission techniques for different cognitive radio network paradigms
- Ability to examine the fundamental tradeoffs in spectrum sensing
- Ability to demonstrate the fundamental constraints and properties of a digital communication system of a cognitive radio
- Ability to implement cognitive radio network (CRN) architectures
- Ability to demonstrate security threats to CR networks

UNIT – I
Cognitive Radio Technology
- Hours: 12

- Introduction - Software-Defined Radio - Cognitive Radio - Spectrum policy - Applications of cognitive radio - Cognitive radio network design - Hardware and system design considerations - Spectrum coexistence – Standardization

UNIT – II
Propagation Issues for Cognitive Radio
- Hours: 12

- Introduction - Generic channel response - path loss - Path loss models - Small-scale fading and the Ricean K-factor - Small-scale fading and the Doppler spectrum - Delay dispersion - Angle dispersion – Polarization - Special environments - key model parameters

UNIT – III
Spectrum Management
- Hours: 12

UNIT – IV
Cognitive Radio Communication Techniques
- Hours: 12

UNIT – V
Cognitive Radio Network Architectures and Security
- Hours: 12

- Cognitive Radio Network Architectures - Topology-Aware CRN Architectures - Publish-Subscribe CRN Architecture

Total contact Hours: 60 | **Total Tutorials:** - | **Total Practical Classes:** - | **Total Hours:** 60

Text Books:

Reference Books:

Department: Electronics and Communication Engineering
Programme: M.Tech. (Wireless Communication)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Category</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TY</td>
<td>ECE82</td>
<td>Multimedia Communication Systems</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Prerequisite:
- To learn the Techniques, Applications, Multimedia Networking, Multimedia characteristics-Protocols and Standards-bandwidth and compression issues in Multimedia communication
- To understand the BMP, PNG, TIFF, JPEG, DFX, AVI, MPEG Audio/ Video Standards and Compression Techniques
- To introduce the Protocols of Multimedia communication
- To understand Media on Demand
- To understand Applications of Multimedia communication

Objectives:
- Knowledgeable in Multimedia Networking, Multimedia characteristics, Protocols, and Standards-Bandwidth and compression issues
- Ability to characterize BMP, PNG, TIFF, JPEG, DFX, AVI, MPEG audio/video standards and compression techniques
- Knowledgeable in protocols of multimedia communication
- Ability to demonstrate media on demand and its applications

Outcome:
- Knowledgeable in Multimedia Networking, Multimedia characteristics, Protocols, and Standards-Bandwidth and compression issues
- Ability to characterize BMP, PNG, TIFF, JPEG, DFX, AVI, MPEG audio/video standards and compression techniques
- Knowledgeable in protocols of multimedia communication
- Ability to demonstrate media on demand and its applications

<table>
<thead>
<tr>
<th>UNIT – I</th>
<th>Introduction</th>
<th>Hours: 9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UNIT – II</th>
<th>Multimedia Representation and Compression Techniques</th>
<th>Hours: 9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UNIT – III</th>
<th>Protocols</th>
<th>Hours: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multicast over shared media network, multicast routing and addressing, scoping multicast and NBMA networks, Reliable transport protocols, TCP adaptation algorithm, RTP, RTCP.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT – IV</th>
<th>Media on Demand</th>
<th>Hours: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IPV6, High speed switching, resource reservation, Buffer management, traffic shaping, caching, scheduling and policing, Storage and media servers, voice and video over IP, MPEG-2 over ATM/IP, indexing synchronization of requests, recording and remote control.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT – V</th>
<th>Applications</th>
<th>Hours: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIME, Peer-to-peer computing, shared application, video conferencing, centralized and distributed conference control, distributed virtual reality, light weight session.</td>
<td></td>
</tr>
</tbody>
</table>

Total contact Hours: 45
Total Tutorials: 15
Total Practical Classes: -
Total Hours: 60

Text Books:

Reference Books:

Websites:

1. http://multimediacommunication.blogspot.in/
2.cmc.rice.edu/
Course Information

Department: Electronics and Communication Engineering
Programme: M.Tech. (Wireless Communication)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE83</td>
<td>Network Management</td>
<td>4</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Prerequisite:

- To learn about the fundamentals of wireless communication
- To study the architectures of different wireless networks
- To understand the concepts of LTE and Femtocells
- To gain knowledge on ubiquitous computing
- To be aware of the emerging technologies in wireless communication

Objectives:

- Ability to analyze the concepts of different emerging wireless technologies
- Knowledgeable in Femtocell concepts and LTE evolution
- Knowledgeable in the concepts of ubiquitous computing
- Knowledgeable in concepts of intelligent system and its application
- Ability to demonstrate the ideas of smart devices and their interoperability

Outcome:

- Ability to analyze the concepts of different emerging wireless technologies
- Knowledgeable in Femtocell concepts and LTE evolution
- Knowledgeable in the concepts of ubiquitous computing
- Knowledgeable in concepts of intelligent system and its application
- Ability to demonstrate the ideas of smart devices and their interoperability

<table>
<thead>
<tr>
<th>UNIT – I</th>
<th>Emerging Technologies</th>
<th>Hours: 12</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UNIT – II</th>
<th>LTE and Femtocell</th>
<th>Hours: 12</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UNIT – III</th>
<th>Ubiquitous Communication</th>
<th>Hours: 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Networks – Power line communication – Personal Area Networks – Mobile user networks – Ad hoc networks – Sensor Networks – Service Oriented networks – Content based Networks – Overlay Networks – Heterogeneous networks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT – IV</th>
<th>Intelligent Autonomous Communication</th>
<th>Hours: 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction – Basic Autonomous – Intra-acting systems – Intelligent Systems – Self aware systems- Self describing – Self explaining – Self modifying – Self management and Autonomic computing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT – V</th>
<th>Future Trends</th>
<th>Hours: 12</th>
</tr>
</thead>
</table>

Total contact Hours: 60
Total Tutorials: -
Total Practical Classes: -
Total Hours: 60

Text Books:

1. Stefan Poslad, Ubiquitous Computing, John Wiley & Sons, 2010

Websites:

Department: Electronics and Communication Engineering
Programme: M.Tech. (Wireless Communication)
Category: TY

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE84</td>
<td>Ultra Wide Band Communication</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite:

- To learn about the basics of UWB Technology
- To understand the signal processing in UWB communication
- To be aware of UWB applications

Objectives

- Knowledgeable in UWB channel modeling
- Ability to examine UWB signal processing technology
- Ability to design UWB antennas
- Knowledgeable in UWB regulations

Outcome

- Knowledgeable in UWB channel modeling
- Ability to examine UWB signal processing technology
- Ability to design UWB antennas
- Knowledgeable in UWB regulations

UNIT – I
Introduction to UWB
Hours: 9
History, Definition, FCC Mask, UWB features, UWB Interference: IEEE 802.11.a Interference, Signal to Interference ratio calculation, Interference with other wireless services. Impulse Radio, Pulsed Multiband, Multiband OFDM, features: Complexity, Power Consumption,

UNIT – II
UWB Technologies and Channel Models
Hours: 9

UNIT – III
UWB Signal Processing
Hours: 9
Data Modulation schemes, UWB Multiple Access Modulation, BER, Rake Receiver, Transmit-Reference (T-R) Technique, UWB Range, Data Rate Performance, UWB Channel Capacity, UWB Wireless Locationing: Position Locationing Methods, Time of Arrival Estimation, NLOS Location Error, Locationing with OFDM.

UNIT – IV
UWB Antennas
Hours: 9
Antenna Requirements, Radiation Mechanism of the UWB Antennas, Types of Broadband antennas, Parameters, Analysis of UWB Antennas, Link Budget for UWB System. Design examples of broad band UWB antennas.

UNIT – V
UWB Applications and Regulations
Hours: 9
Wireless Ad hoc Networking, UWB Wireless Sensor, RFID, Consumer Electronics and Personal, Asset Location, Medical applications, UWB Regulation and standards in various countries, UWB Regulation in ITU, IEEE Standardization

Total contact Hours: 45
Total Tutorials: 15
Total Practical Hours: -
Total Hours: 60

Text Books:

Reference Books:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE85</td>
<td>Digital Communication</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Receivers</td>
<td>-</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisite

- To gain knowledge in receivers under AWGN and fading channels
- To understand the significance of synchronization and adaptive equalization

Objectives

- Ability to design and demonstrate the performance of receivers in AWGN and fading channels
- Ability to demonstrate any synchronization technique
- Knowledgeable in various algorithms used for adaptive equalization

UNIT – I

Review of Digital Communication Techniques

- Hours: 9
- Base band communication; signal space representation, linear and nonlinear modulation techniques, Error tracking and Spectral characteristics of digital modulation.

UNIT – II

Optimum Receivers for AWGN Channel

- Hours: 9
- Correlation demodulator, matched filter, maximum likelihood sequence detector, optimum receiver for CPM signals, M-ary orthogonal signals, envelope detectors for M-ary and correlated binary signals.

UNIT – III

Receivers for Fading Channels

- Hours: 9
- Characterization of fading multiple channels, statistical models, flat and frequency selective fading, diversity technique, Optimal receivers for data detection and synchronization parameter estimation, coded waveform for fading channel.

UNIT – IV

Synchronization Techniques

- Hours: 9
- Carrier and signal synchronization, carrier phase estimation-PLL, Decision directed loops, symbol timing estimation, maximum likelihood and non-decision directed timing estimation, joint estimation.

UNIT – V

Adaptive Equalization

- Hours: 9
- Zero forcing algorithm, LMS algorithm, adaptive decision-feedback equalizer and Equalization of Trellis-coded signals, Kalman algorithm, blind equalizers and stochastic gradient algorithm.

Total contact Hours: 45 | **Total Tutorials: 15** | **Total Practical Classes:** - | **Total Hours: 60**

Reference Books:

<table>
<thead>
<tr>
<th>Department: Electronics and Communication Engineering</th>
<th>Programme: M.Tech. (Wireless Communication)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>Category: TY</td>
</tr>
<tr>
<td>Subject Code</td>
<td>Subject</td>
</tr>
<tr>
<td>ECE86</td>
<td>Space Time Wireless Communication</td>
</tr>
<tr>
<td>Prerequisite</td>
<td></td>
</tr>
<tr>
<td>Objectives</td>
<td></td>
</tr>
<tr>
<td>- To understand multiple antenna propagation</td>
<td></td>
</tr>
<tr>
<td>- To learn about MIMO channels</td>
<td></td>
</tr>
<tr>
<td>- To gain knowledge on spatial diversity</td>
<td></td>
</tr>
<tr>
<td>- To understand the significance of coding and MIMO techniques</td>
<td></td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>- Knowledgeable in fading and MIMO channels</td>
<td></td>
</tr>
<tr>
<td>- Ability to examine antenna diversity</td>
<td></td>
</tr>
<tr>
<td>- Ability to demonstrate the antenna coding and multiuser detection</td>
<td></td>
</tr>
<tr>
<td>UNIT – I</td>
<td>Multiple Antenna Propagation and St Channel Characterization</td>
</tr>
<tr>
<td>Wireless channel, Scattering model in macrocells, Channel as a ST random field, Scattering functions, Polarization and field diverse channels, Antenna array topology, Degenerate channels, reciprocity and its implications, Channel definitions, Physical scattering model, Extended channel models, Channel measurements, sampled signal model, ST multiuser and ST interference channels, ST channel estimation.</td>
<td></td>
</tr>
<tr>
<td>UNIT – II</td>
<td>Capacity of Multiple Antenna Channels</td>
</tr>
<tr>
<td>Capacity of frequency flat deterministic MIMO channel: Channel unknown to the transmitter, Channel known to the transmitter, capacity of random MIMO channels, Influence of ricean fading, fading correlation, XPD and degeneracy on MIMO capacity, Capacity of frequency selective MIMO channels.</td>
<td></td>
</tr>
<tr>
<td>UNIT – III</td>
<td>Spatial Diversity</td>
</tr>
<tr>
<td>Diversity gain, Receive antenna diversity, Transmit antenna diversity, Diversity order and channel variability, Diversity performance in extended channels, Combined space and path diversity ,Indirect transmit diversity, Diversity of a space-time- frequency selective fading channel.</td>
<td></td>
</tr>
<tr>
<td>UNIT – IV</td>
<td>Multiple Antenna Coding and Receivers</td>
</tr>
<tr>
<td>Coding and interleaving architecture, ST coding for frequency flat channels, ST coding for frequency selective channels, Receivers(SISO,SIMO,MIMO),Iterative MIMO receivers, Exploiting channel knowledge at the transmitter: linear pre-filtering, optimal pre-filtering for maximum rate, optimal pre-filtering for error rate minimization, selection at the transmitter, Exploiting imperfect channel knowledge.</td>
<td></td>
</tr>
<tr>
<td>UNIT – V</td>
<td>ST OFDM, Spread Spectrum and MIMO Multiuser Detection</td>
</tr>
<tr>
<td>Total contact Hours: 45</td>
<td>Total Tutorials: 15</td>
</tr>
<tr>
<td>Reference Books:</td>
<td></td>
</tr>
<tr>
<td>Subject Code</td>
<td>Subject</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>PHE51</td>
<td>Nanotechnology and its Applications</td>
</tr>
</tbody>
</table>

Prerequisite

- To understand the size effect
- To introduce the changes in the dimension of the material from 3D to zero dimension
- To study the latest characterisation techniques and instrumentation
- To analyse the changes in microelectronics to nano electronics
- To apply size effect for nano sensors and nano devices

Objectives

- Quantum mechanical knowledge about reduced size, wave nature and discrete energy of nano system
- Ability to analyse dimensional changes from three dimension to zero dimension in the energy and density of states
- Understanding of spectroscopic, optical and electroanalytical Characterization
- techniques of nanomaterials
- Analysis of basic principles of micro electronics to nano electronics
- Application of size effect to devices and sensor
- Ability to implement the construction and working of devices based on size effect

Outcome

UNIT – I Basic Properties of Nanoparticles Hours: 12
Introduction - Size effect and properties of nanoparticles - particle size - particle shape - particle density - melting point, surface tension, wettability - specific surface area and pore size – Reason for change in optical properties, electrical properties, and mechanical properties – advantages.

UNIT – II Nanostructures-One Dimension and Zero Dimension Hours: 12
Nanotube properties- Single walled and Multi walled Nanotubes (SWNT and MWNT) - synthesis and purification - pyrolysis and arc discharge method- Quantum dots-Nanolithography and Lithography techniques.

UNIT – III Mobile Data Networks Hours: 12

UNIT – IV Nanoelectronics Hours: 12
Overview of basic nanoelectronic technologies-single electron devices-quantum mechanical tunnelling devices-spin nanoelectronics (spintronics)-Molecular electronics-molecular devices-Transistor from micro to nano and Nano-MOSFETS

UNIT – V Nanodevices Hours: 12
Nano sensors-Molecular nano machines-Micro-electro mechanical systems(MEMS) &NEMS-Nanotechnology for data storage-Magnetic storage-High density quantised magnetic disks-MRAMS.

Text Books:

3. Nanostructured materials and nanotechnology, Concise Edition, Editor:- Hari Singh Nalwa; Academic
<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
Department : Electronics and Communication Engineering
Programme : M.Tech (Wireless Communication)

Semester : One
Category : LB

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC162</td>
<td>Wireless Communication and Networking Laboratory</td>
<td>-</td>
<td>3</td>
<td>60</td>
</tr>
</tbody>
</table>

Prerequisite:

Objectives:
- To understand the working of communication system models
- To understand and implement application using embedded development board
- To simulate the different channel models for wireless networks

Outcome:
- Ability to demonstrate the design of modulator and antenna used for wireless communication
- Ability to implement the GSM and HTTP data transfer using Qualnet software and study the different parameters of the network
- Ability to design simple digital systems using Spartan6 FPGA board
- Ability to design filters suitable for wireless channel

LIST OF EXPERIMENTS
13. Design of GMSK modulator for GSM system.
15. Study and comparison of various wireless channel models.
16. Call establishment using different entities of GSM network using Qualnet.
17. Development of a network to run HTTP application using Qualnet.
18. Developing any one network topology, establishing a routing protocol and analysing using NS2.
20. Designing Yagi antenna and study the Return loss magnitude and phase characteristics.
21. FFT of real time input signals using DSP trainer kits.
22. Simulation of OFDM transmitter and receiver in Matlab.
23. Study of Spartan6 FPGA and perform the following operations
 iv. Activating the traffic light controller interface
 v. Enabling the Keypad Matrix interface with LEDs.
 vi. Enabling the graphic LCD interface in Spartan6 FPGA.
 iv Design and implementation of Manchester encoder.

Total contact Hours: -
Total Tutorials: -
Total Practical Classes: 45
Total Hours: 45